使用COCOAPI评测结果
目标检测、实例分割以及关键点检测都可以使用 COCO API 来进行评测,主要方法有两种:
- 按照 COCO 的格式保存预测的结果,然后评测
- 不保存预测结果,直接评测
保存预测结果
这一种方法要简单一些,只用给定格式来保存即可,具体格式参考这篇博客,注意事项如下:
- Box 是按照 [x, y, w, h] 的格式来保存
- Mask 是用 RLE 格式来保存,使用如下代码来转换
import numpy as np
import pycocotools.mask as mask_util
masks = masks > 0.5 # 首先转化为二值 mask,这里假设 mask 通道为 1
rle = mask_util.encode(np.array(segmap_masked[:, :, np.newaxis], dtype=np.uint8, order="F"))[0]
rle['counts'] = rle["counts"].decode("utf-8")
dataset_results.append({'image_id': all_imgs[i]['id'], 'category_id': 1,
'segmentation': rle, "score": float(cls_scores[k])})
获得预测结果之后使用以下代码来评测:
from pycocotools.coco impor COCO
from pycocotools.cocoeval import COCOeval
cocoGt = COCO(PATH_TO_GT_JSON)
cocoDt = cocoGt.loadRes(PATH_TO_RESULT_JSON)
# 最后一个参数是数据格式,按照具体任务来指定
cocoEval = COCOeval(cocoGt, cocoDt, "segm")
cocoEval.evaluate()
cocoEval.accumulate()
cocoEval.summarize()
直接评测
主要思想还是先创建一个空的 COCOeval 对象,然后每次预测的时候更新结果到其中,最后再直接评测,这个实现起来可能比上面的要麻烦,这里直接贴上 DETR 里面的部分代码:
# 每次预测后更新结果
def update(self, predictions):
img_ids = [predictions['image_id']]
self.img_ids.extend(img_ids)
for iou_type in self.iou_types:
results = self.prepare(predictions, iou_type)
# suppress pycocotools prints
with open(os.devnull, 'w') as devnull:
with contextlib.redirect_stdout(devnull):
# 将预测结果转换为 COCO 的对象
coco_dt = COCO.loadRes(self.coco_gt, results) if results else COCO()
coco_eval = self.coco_eval[iou_type]
# 将结果保存到 COCOeval 对象中
coco_eval.cocoDt = coco_dt
coco_eval.params.imgIds = list(img_ids)
# 进行 evaluate 操作,作用等同于上面代码段中的 cocoEval.evaluate()
img_ids, eval_imgs = evaluate(coco_eval)
self.eval_imgs[iou_type].append(eval_imgs)
附录
直接评测的完整代码
def evaluate(sess, net, inputs, test_collect, data_loader, base_ds):
iou_types = ('segm', )
coco_evaluator = CocoEvaluator(base_ds, iou_types)
for im, image_id in data_loader:
cat_prob, boxes, seg_pred, masks = im_detect(sess, net, inputs, im, test_collect)
cls_scores = cat_prob[:, 1]
segmaps = np.zeros([len(seg_pred), im.shape[0], im.shape[1]])
for k in range(len(seg_pred)):
img_for_single_instance = copy.deepcopy(im)
segmap = seg_pred[k, :, :, 1]
segmap = cv2.resize(segmap, (img_for_single_instance.shape[1], img_for_single_instance.shape[0]),
interpolation=cv2.INTER_LANCZOS4)
segmap_masked = segmap * masks[k]
segmaps[k] = segmap_masked
res = {'scores': cls_scores, 'segmaps': segmaps, 'image_id': image_id}
# 每次预测后更新结果
if coco_evaluator is not None:
coco_evaluator.update(res)
# accumulate predictions from all images
if coco_evaluator is not None:
coco_evaluator.synchronize_between_processes()
coco_evaluator.accumulate()
coco_evaluator.summarize()
DETR COCOEvaluator,有删改
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
COCO evaluator that works in distributed mode.
Mostly copy-paste from https://github.com/pytorch/vision/blob/edfd5a7/references/detection/coco_eval.py
The difference is that there is less copy-pasting from pycocotools
in the end of the file, as python3 can suppress prints with contextlib
"""
import os
import contextlib
import copy
import numpy as np
from pycocotools.cocoeval import COCOeval
from pycocotools.coco import COCO
import pycocotools.mask as mask_util
class CocoEvaluator(object):
def __init__(self, coco_gt, iou_types):
assert isinstance(iou_types, (list, tuple))
coco_gt = copy.deepcopy(coco_gt)
self.coco_gt = coco_gt
self.iou_types = iou_types
self.coco_eval = {}
for iou_type in iou_types:
self.coco_eval[iou_type] = COCOeval(coco_gt, iouType=iou_type)
self.img_ids = []
self.eval_imgs = {k: [] for k in iou_types}
def update(self, predictions):
img_ids = [predictions['image_id']]
self.img_ids.extend(img_ids)
for iou_type in self.iou_types:
results = self.prepare(predictions, iou_type)
# suppress pycocotools prints
with open(os.devnull, 'w') as devnull:
with contextlib.redirect_stdout(devnull):
coco_dt = COCO.loadRes(self.coco_gt, results) if results else COCO()
coco_eval = self.coco_eval[iou_type]
coco_eval.cocoDt = coco_dt
coco_eval.params.imgIds = list(img_ids)
img_ids, eval_imgs = evaluate(coco_eval)
# print('eeee', eval_imgs)
self.eval_imgs[iou_type].append(eval_imgs)
def synchronize_between_processes(self):
for iou_type in self.iou_types:
self.eval_imgs[iou_type] = np.concatenate(self.eval_imgs[iou_type], 2)
create_common_coco_eval(self.coco_eval[iou_type], self.img_ids, self.eval_imgs[iou_type])
def accumulate(self):
for coco_eval in self.coco_eval.values():
coco_eval.accumulate()
def summarize(self):
for iou_type, coco_eval in self.coco_eval.items():
print("IoU metric: {}".format(iou_type))
coco_eval.summarize()
def prepare(self, predictions, iou_type):
if iou_type == "bbox":
return self.prepare_for_coco_detection(predictions)
elif iou_type == "segm":
return self.prepare_for_coco_segmentation(predictions)
else:
raise ValueError("Unknown iou type {}".format(iou_type))
def prepare_for_coco_detection(self, predictions):
coco_results = []
for original_id, prediction in predictions.items():
if len(prediction) == 0:
continue
boxes = prediction["boxes"]
boxes = convert_to_xywh(boxes).tolist()
scores = prediction["scores"].tolist()
labels = prediction["labels"].tolist()
coco_results.extend(
[
{
"image_id": original_id,
"category_id": labels[k],
"bbox": box,
"score": scores[k],
}
for k, box in enumerate(boxes)
]
)
return coco_results
def prepare_for_coco_segmentation(self, predictions):
coco_results = []
for idx in range(len(predictions['scores'])):
masks = predictions['segmaps'][idx]
masks = masks > 0.5
scores = predictions['scores'][idx]
rle = mask_util.encode(np.array(masks[:, :, np.newaxis], dtype=np.uint8, order="F"))[0]
rle['counts'] = rle["counts"].decode("utf-8")
coco_results.append(
{
"image_id": predictions['image_id'],
"category_id": 1,
"segmentation": rle,
"score": scores,
}
)
return coco_results
def convert_to_xywh(boxes):
xmin, ymin, xmax, ymax = boxes.unbind(1)
return np.stack((xmin, ymin, xmax - xmin, ymax - ymin), axis=1)
def create_common_coco_eval(coco_eval, img_ids, eval_imgs):
img_ids = list(img_ids)
eval_imgs = list(eval_imgs.flatten())
coco_eval.evalImgs = eval_imgs
coco_eval.params.imgIds = img_ids
coco_eval._paramsEval = copy.deepcopy(coco_eval.params)
#################################################################
# From pycocotools, just removed the prints and fixed
# a Python3 bug about unicode not defined
#################################################################
def evaluate(self):
'''
Run per image evaluation on given images and store results (a list of dict) in self.evalImgs
:return: None
'''
# tic = time.time()
# print('Running per image evaluation...')
p = self.params
# add backward compatibility if useSegm is specified in params
if p.useSegm is not None:
p.iouType = 'segm' if p.useSegm == 1 else 'bbox'
print('useSegm (deprecated) is not None. Running {} evaluation'.format(p.iouType))
# print('Evaluate annotation type *{}*'.format(p.iouType))
p.imgIds = list(np.unique(p.imgIds))
if p.useCats:
p.catIds = list(np.unique(p.catIds))
p.maxDets = sorted(p.maxDets)
self.params = p
self._prepare()
# loop through images, area range, max detection number
catIds = p.catIds if p.useCats else [-1]
if p.iouType == 'segm' or p.iouType == 'bbox':
computeIoU = self.computeIoU
elif p.iouType == 'keypoints':
computeIoU = self.computeOks
self.ious = {
(imgId, catId): computeIoU(imgId, catId)
for imgId in p.imgIds
for catId in catIds}
evaluateImg = self.evaluateImg
maxDet = p.maxDets[-1]
evalImgs = [
evaluateImg(imgId, catId, areaRng, maxDet)
for catId in catIds
for areaRng in p.areaRng
for imgId in p.imgIds
]
# this is NOT in the pycocotools code, but could be done outside
evalImgs = np.asarray(evalImgs).reshape(len(catIds), len(p.areaRng), len(p.imgIds))
self._paramsEval = copy.deepcopy(self.params)
# toc = time.time()
# print('DONE (t={:0.2f}s).'.format(toc-tic))
return p.imgIds, evalImgs
#################################################################
# end of straight copy from pycocotools, just removing the prints
#################################################################